STM32F103学习笔记 | 4.STM32F103芯片介绍

STM32F1入门学习将使用STM32F103C8T6开发板最小系统板。小R为什么选择它来入门呢?咳咳~首先,ST官方提供强大且易用的标准库函数,使得开发过程方便快捷;其次,网上的教程资料多也十分详细。所以呢,它对高校学生和广大初学者入门都是一个非常好的选择。

文章目录

    • 一、 开发板简介
    • 二、 STM32简介
    • 三、 STM32F103引脚图
    • 四、 STM32F103简述
    • 参考文献


一、 开发板简介

开发板的实物图如下:

在这里插入图片描述

开发板的主要参数如下:

型号:STM32F103C8T6

封装类型:LQFP

引脚个数:48

内核:Cortex - M3

工作频率:72MHz

存储资源:64K Byte Flash, 20K Byte SRAM

接口资源:2*SPI, 3*USART, 2*IIC, 1*CAN, 37*I/O

数模转换:2*ADC(12位/16通道)

调试下载:支持JTAG/SWD接口调试下载,支持IAP

二、 STM32简介

2.1 Cortex内核(ARM内核)

ARM公司在经典处理器ARM11以后的产品改用Cortex命名,并分成A、R和M三类,旨在为不同的市场提供服务,全世界超过95%的智能手机和平板电脑都采用ARM架构。

Cortex系列属于ARMv7架构,它是2010年ARM公司最新的指令集架构。ARMv7架构定义了三大分工明确的系列:

“A”系列:面向尖端高性能的基于虚拟内存的操作系统和用户应用;

“R”系列:面向实时操作系统;

“M”系列:面向微控制器。

2.2 ST意法半导体

本系列学习所使用的开发板板载主控芯片为STM32F103C8T6,它是意法半导体在MCU领域推出的非常经典的芯片系列,因其强大的功能和丰富的内部资源,以及众多的使用者和学习资料。初学者一般都是将其作为入门的芯片(小R也是),它在嵌入式领域应用极广。

ST的MCU系列种类繁多,光是芯片选型手册就有几十页。他们公司有一套命名规则,用来帮助使用者合理高效地进行芯片的选择。以下是ST公司的芯片产品命名规则截图:

在这里插入图片描述

三、 STM32F103引脚图

四、 STM32F103简述

4.1 ARM®的Cortex™-M3核心并内嵌闪存和SRAM

ARM的Cortex™-M3处理器是最新一代的嵌入式ARM处理器,它为实现MCU的需要提供了低成本的平台、缩减的引脚数目、降低的系统功耗,同时提供卓越的计算性能和先进的中断系统响应。

ARM的Cortex™-M3是32位的RISC处理器,提供额外的代码效率,在通常8和16位系统的存储空间上发挥了ARM内核的高性能。

4.2 内置闪存存储器

64K或128K字节的内置闪存存储器,用于存放程序和数据。小R使用的开发板内置闪存存储器为64K。

4.3 CRC(循环冗余校验)计算单元

CRC(循环冗余校验)计算单元使用一个固定的多项式发生器,从一个32位的数据字产生一个CRC码。在众多的应用中,基于CRC的技术被用于验证数据传输或存储的一致性。

4.4 内置SRAM

20K字节的内置SRAM,CPU能以0等待周期访问(读/写)。

4.5 嵌套的向量式中断控制器(NVIC)

STM32F103xx增强型产品内置嵌套的向量式中断控制器,能够处理多达43个可屏蔽中断通道(不包括16个Cortex™-M3的中断线)和16个优先级。

● 紧耦合的NVIC能够达到低延迟的中断响应处理

● 中断向量入口地址直接进入内核

● 紧耦合的NVIC接口

● 允许中断的早期处理

● 处理晚到的较高优先级中断

● 支持中断尾部链接功能

● 自动保存处理器状态

● 中断返回时自动恢复,无需额外指令开销

该模块以最小的中断延迟提供灵活的中断管理功能。

4.6 外部中断/事件控制器(EXTI)

外部中断/事件控制器包含19个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置它的触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;有一个挂起寄存器维持所有中断请求的状态。

EXTI可以检测到脉冲宽度小于内部APB2的时钟周期。多达80个通用I/O口连接到16个外部中断线。

4.7 时钟和启动

系统时钟的选择是在启动时进行,复位时内部8MHz的RC振荡器被选为默认的CPU时钟,随后可以选择外部的、具失效监控的4~16MHz时钟;当检测到外部时钟失效时,它将被隔离,系统将自动地切换到内部的RC振荡器,如果使能了中断,软件可以接收到相应的中断。同样,在需要时可以采取对PLL时钟完全的中断管理(如当一个间接使用的外部振荡器失效时)。

多个预分频器用于配置AHB的频率、高速APB(APB2)和低APB(APB1)区域。AHB和高速APB的最高频率是72MHz,低速APB的最高频率为36MHz。

4.8 自举模式

在启动时,通过自举引脚可以选择三种自举模式中的一种:

● 从程序闪存存储器自举

● 从系统存储器自举

● 从内部SRAM自举

自举加载程序(Bootloader)存放于系统存储器中,可以通过USART1对闪存重新编程。

4.9 供电方案

● VDD = 2.0~3.6V:VDD引脚为I/O引脚和内部调压器供电。

● VSSA,VDDA = 2.0~3.6V:为ADC、复位模块、RC振荡器和PLL的模拟部分提供供电。使用ADC时,VDDA不得小于2.4V。VDDA和VSSA必须分别连接到VDD和VSS。

● VBAT = 1.8~3.6V:当关闭VDD时,(通过内部电源切换器)为RTC、外部32kHz振荡器和后备寄存器供电。

4.10 供电监控器

本产品内部集成了上电复位(POR)/掉电复位(PDR)电路,该电路始终处于工作状态,保证系统在供电超过2V时工作;当VDD低于设定的阀值(VPOR/PDR)时,置器件于复位状态,而不必使用外部复位电路。

器件中还有一个可编程电压监测器(PVD),它监视VDD/VDDA供电并与阀值VPVD比较,当VDD低于或高于阀值VPVD时产生中断,中断处理程序可以发出警告信息或将微控制器转入安全模式。PVD功能需要通过程序开启。

4.11 电压调压器

调压器有三个操作模式:主模式(MR)、低功耗模式(LPR)和关断模式

● 主模式(MR)用于正常的运行操作

● 低功耗模式(LPR)用于CPU的停机模式

● 关断模式用于CPU的待机模式:调压器的输出为高阻状态。

4.12 低功耗模式

STM32F103xC、STM32F103xD和STM32F103xE增强型产品支持三种低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。

4.13 DMA

灵活的7路通用DMA可以管理存储器到存储器、设备到存储器和存储器到设备的数据传输;DMA控制器支持环形缓冲区的管理,避免了控制器传输到达缓冲区结尾时所产生的中断。

每个通道都有专门的硬件DMA请求逻辑,同时可以由软件触发每个通道;传输的长度、传输的源地址和目标地址都可以通过软件单独设置。

DMA可以用于主要的外设:SPI、I2C、USART,通用、基本和高级控制定时器TIMx和ADC。

4.14 RTC(实时时钟)和后备寄存器

4.15 定时器和看门狗

中等容量的STM32F103xx增强型系列产品包含1个高级控制定时器、3个普通定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。

高级控制定时器(TIM1)可以被看成是分配到6个通道的三相PWM发生器,它具有带死区插入的互补PWM输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

● 输入捕获

● 输出比较

● 产生PWM(边缘或中心对齐模式)

● 单脉冲输出

配置为16位标准定时器时,它与TIMx定时器具有相同的功能。配置为16位PWM发生器时,它具有全调制能力(0~100%)。

通用定时器(TIMx)

STM32F103xx增强型产品中,内置了多达3个可同步运行的标准定时器(TIM2、TIM3和TIM4)。每个定时器都有一个16位的自动加载递加/递减计数器、一个16位的预分频器和4个独立的通道,每个通道都可用于输入捕获、输出比较、PWM和单脉冲模式输出,在最大的封装配置中可提供最多12个输入捕获、输出比较或PWM通道。

它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生PWM输出。每个定时器都有独立的DMA请求机制。

这些定时器还能够处理增量编码器的信号,也能处理1至3个霍尔传感器的数字输出。

4.16 IIC总线

多达2个I2C总线接口,能够工作于多主模式或从模式,支持标准和快速模式。I2C接口支持7位或10位寻址,7位从模式时支持双从地址寻址。内置了硬件CRC发生器/校验器。它们可以使用DMA操作并支持SMBus总线2.0版/PMBus总线。

4.17 通用同步/异步收发器(USART)

USART1接口通信速率可达4.5兆位/秒,其他接口的通信速率可达2.25兆位/秒。USART接口具有硬件的CTS和RTS信号管理、支持IrDA SIR ENDEC传输编解码、兼容ISO7816的智能卡并提供LIN主/从功能。

所有USART接口都可以使用DMA操作。

4.18 串行外设接口(SPI)

多达2个SPI接口,在从或主模式下,全双工和半双工的通信速率可达18兆位/秒。3位的预分频器可产生8种主模式频率,可配置成每帧8位或16位。硬件的CRC产生/校验支持基本的SD卡和MMC模式。所有的SPI接口都可以使用DMA操作。

4.19 控制器区域网络(CAN)

CAN接口兼容规范2.0A和2.0B(主动),位速率高达1兆位/秒。它可以接收和发送11位标识符的标准帧,也可以接收和发送29位标识符的扩展帧。具有3个发送邮箱和2个接收FIFO,3级14个可调节的滤波器。

4.20 通用串行总线(USB)

STM32F103xx增强型系列产品,内嵌一个兼容全速USB的设备控制器,遵循全速USB设备(12兆位/秒)标准,端点可由软件配置,具有待机/唤醒功能。USB专用的48MHz时钟由内部主PLL直接产生(时钟源必须是一个HSE晶体振荡器)。

4.21 通用输入输出接口(GPIO)

每个GPIO引脚都可以由软件配置成输出(推挽或开漏)、输入(带或不带上拉或下拉)或复用的外设功能端口。多数GPIO引脚都与数字或模拟的复用外设共用。

除了具有模拟输入功能的端口,所有的GPIO引脚都有大电流通过能力。在需要的情况下,I/O引脚的外设功能可以通过一个特定的操作锁定,以避免意外的写入I/O寄存器。

在APB2上的I/O脚可达18MHz的翻转速度。

4.22 ADC(模拟/数字转换器)

STM32F103xx增强型产品内嵌2个12位的模拟/数字转换器(ADC),每个ADC共用多达16个外部通道,可以实现单次或扫描转换。在扫描模式下,自动进行在选定的一组模拟输入上的转换。

ADC接口上的其它逻辑功能包括:

● 同步的采样和保持

● 交叉的采样和保持

● 单次采样

ADC可以使用DMA操作。

模拟看门狗功能允许非常精准地监视一路、多路或所有选中的通道,当被监视的信号超出预置的阀值时,将产生中断。由标准定时器(TIMx)和高级控制定时器(TIM1)产生的事件,可以分别内部级联到ADC的开始触发和注入触发,应用程序能使AD转换与时钟同步。

4.23 温度传感器

温度传感器产生一个随温度线性变化的电压,转换范围在2V < VDDA < 3.6V之间。温度传感器在内部被连接到ADC12_IN16的输入通道上,用于将传感器的输出转换到数字数值。

4.24 串行单线JTAG调试口(SWJ-DP)

内嵌ARM的SWJ-DP接口,这是一个结合了JTAG和串行单线调试的接口,可以实现串行单线调试接口或JTAG接口的连接。JTAG的TMS和TCK信号分别与SWDIO和SWCLK共用引脚,TMS脚上的一个特殊的信号序列用于在JTAG-DP和SW-DP间切换。

2.3 STM32F103xx增强型模块框图

在这里插入图片描述

在这里插入图片描述

2.4 STM32F103xx时钟树

在这里插入图片描述

参考文献

http://t.csdnimg.cn/vx7Dh

http://t.csdnimg.cn/iA9kx

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/571403.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32 串口打印乱码(Cubemx)

STM32 串口打印乱码&#xff08;Cubemx&#xff09; 时钟配置错误&#xff0c;CubeMX默认的外部晶振是25MHz&#xff0c;而板载的晶振为8MHzSTM32F407修改程序将外部25M晶振修改为8M&#xff08;标准库、HAL库&#xff09; 核心问题 芯片型号与晶振配置&#xff1a;使用的ST…

深入探究音视频开源库WebRTC中NetEQ音频抗网络延时与抗丢包的实现机制

目录 1、引言 2、WebRTC简介 3、什么是NetEQ&#xff1f; 4、NetEQ技术详解 4.1、NetEQ概述 4.2、抖动消除技术 4.3、丢包补偿技术 4.4、NetEQ概要设计 4.5、NetEQ的命令机制 4.6、NetEQ的播放机制 4.7、MCU的控制机制 4.8、DSP的算法处理 4.9、DSP算法的模拟测试…

Redis之路系列(5)功夫在诗外

5 拓展篇—功夫在诗外 6.0新特性 相对都比较鸡肋&#xff0c;谨慎在生产环境使用 ACL安全策略 Redis6版本推出了ACL(Access Control List)访问控制权限 的功能&#xff0c;基于此功能&#xff0c;可以设置多个用户&#xff0c;并且给每个用户单独设 置命令权限和数据权限。 …

【Linux高性能服务器编程】两种高性能并发模式剖析——领导者/追随者模式

hello &#xff01;大家好呀&#xff01; 欢迎大家来到我的Linux高性能服务器编程系列之两种高性能并发模式介绍&#xff0c;在这篇文章中&#xff0c;你将会学习到高效的创建自己的高性能服务器&#xff0c;并且我会给出源码进行剖析&#xff0c;以及手绘UML图来帮助大家来理解…

【行为型模式】中介者模式

一、中介者模式概述 中介者模式定义&#xff1a;用一个中介对象来封装一系列的对象交互&#xff0c;中介者使各对象不需要显式地相互引用&#xff0c;从而使其耦合松散&#xff0c;而且可以独立地改变它们之间的交互。中介者模式又称为调停者模式。(对象行为型模式) 中介者模式…

Web3与物联网:探索区块链如何驱动智能设备的未来

引言 在数字化快速发展的时代&#xff0c;Web3技术和物联网&#xff08;IoT&#xff09;都成为了前沿技术的代表。两者的结合正逐渐展现出无限的可能性&#xff0c;尤其是在智能设备和数据安全方面。本文将深入探讨Web3如何与物联网相结合&#xff0c;以及这种结合对未来智能设…

有效三角形的个数 ---- 双指针

题目链接 题目: 分析: 这道题的意思就是将数组的元素, 拿出三个数, 能构成三角形就是有效的判断是否能构成三角形的条件: 两边之和大于第三边, 我们只需找到三个数中最小的两个数之和是否大于第三边, 大于则可以构成三角形解法一: 暴力解法, 即找到所有的三元组, 并挨个判断,…

分布式与一致性协议之CAP(二)

CAP CAP不可能三角 CAP不可能三角是指对于一个分布式系统而言&#xff0c;一致性、可用性、分区容错性指标不可兼得&#xff0c;只能从中选择两个&#xff0c; 如图所示。CAP不可能三角最初是埃里克布鲁尔(Eric Brewer)基于自己的工程实践提出的一个猜想&#xff0c;后被塞斯吉…

【C语言 |预处理指令】预处理指令详解(包括编译与链接)

目录 一、编译与链接 1.翻译环境 -预处理 -编译 -汇编 -链接 2.执行环境 二、预定义符号 三、#define定义常量 四、#define定义宏 五、带有副作用的宏参数 六、宏替换的规则 七、 宏函数的对比 八、#和## 1.#运算符 2.##运算符 九、命名约定 十、#undef 十一、 命…

【03-掌握Scikit-learn:深入机器学习的实用技术】

文章目录 前言数据预处理缺失值处理数据缩放特征选择模型训练参数调整模型评估总结前言 经过了对Python和Scikit-learn的基础安装及简单应用,我们现在将更深入地探究Scikit-learn的实用技术,以进一步提升我们的数据科学技能。在本文中,我们将涵盖数据预处理、特征选择、模型…

【唯美情侣爱情表白纪念HTML单页】

唯美情侣爱情表白纪念HTML单页 效果图部分代码领取代码下期更新预报 效果图 整图 背景图 部分代码 index.html <!DOCTYPE html> <html lang"en"><head><meta http-equiv"Content-Type" content"text/html; charsetUTF-8"…

YOLOv8 实现车牌检测,生成可视化检测视频(20240424)

原项目源码地址&#xff1a;GitHub 我的源码地址&#xff1a;Gitee 环境搭建请参考&#xff1a;Win10 搭建 YOLOv8 运行环境&#xff08;20240423&#xff09;-CSDN博客 环境测试请参考&#xff1a;本地运行测试 YOLOv8&#xff08;20240423&#xff09;-CSDN博客 训练数据…

《系统架构设计师教程(第2版)》第15章-面向服务架构设计理论与实践-05-SOA设计模式

文章目录 1. 服务注册表模式1.1 服务注册表1.2 SOA治理功能1.3 注册表中的配置文件 2. 企业服务总线&#xff08;ESB&#xff09;模式3. Synchro ESB3. 微服务模式3.1 概述3.2 微服务架构模式方案3.2.1 聚合器微服务1&#xff09;概述2&#xff09;几种特殊的聚合微服务 3.2.2 …

RTT学习 cortex-m移植

Cortex-M移植 PRIMASK寄存器 PRIMASK寄存器为1位宽的中断屏蔽寄存器。在置位时&#xff0c;它会阻止不可屏蔽中断&#xff08;NMI&#xff09;和HardFault异常之外的所有异常&#xff08;包括中断&#xff09;。实际上&#xff0c;它是将当前异常优先级提升为0&#xff0c;这也…

Jenkins CI/CD 持续集成专题四 Jenkins服务器IP更换

一、查看brew 的 services brew services list 二、编辑 homebrew.mxcl.jenkins-lts.plist 将下面的httpListenAddress值修改为自己的ip 服务器&#xff0c;这里我是用的本机的ip 三 、重新启动 jenkins-lts brew services restart jenkins-lts 四 、浏览器访问 http://10.…

golang学习笔记(defer基础知识)

什么是defer defer语句用于golang程序中延迟函数的调用&#xff0c; 每次defer都会把一个函数压入栈中&#xff0c; 函数返回前再把延迟的函数取出并执行。 为了方便描述&#xff0c; 我们把创建defer的函数称为主函数&#xff0c; defer语句后面的函数称为延迟函数。延迟函数…

【Burpsuite靶场】XSS专题精讲

【个人】&#xff1a;NEUQ大一学生 【专业】&#xff1a;通信工程 (Communication Engineering) 【个人方向】&#xff1a;网安、开发双管齐下 【座右铭】&#xff1a;真正的英雄主义,就是看清生活的真相后依然热爱生活 -- 罗曼.罗兰 一、认识XSS&#xff08;跨站脚本攻击&…

fatal: unable to access ‘https://github.com/alibaba/flutter_boost.git/

Git error. Command: git fetch stdout: stderr: fatal: unable to access ‘https://github.com/alibaba/flutter_boost.git/’: Failed to connect to github.com port 443 after 75005 ms: Couldn’t connect to server exit code: 128 GitHub (国际型)代码 分发平台/托管平…

梯度下降法总是在同一点收敛吗?

梯度下降法总是在同一点收敛吗&#xff1f; 梯度下降法并不总是在同一点收敛。梯度下降法的收敛取决于多个因素&#xff0c;包括初始参数的选择、学习率的设置、损失函数的形状等。 以下是一些影响梯度下降法收敛行为的关键因素&#xff1a; 1.初始参数&#xff1a; 初始参数…

Json-server 模拟后端接口

json-server&#xff0c;模拟rest接口&#xff0c;自动生成增删改查接口。(官网地址&#xff1a;json-server - npm) 使用方法&#xff1a; 1. 安装json-server&#xff0c;npm i json-server -g 2. 创建json文件&#xff0c;文件中存储list数据&#xff0c;db.json {"…
最新文章